
© 2006, 2008 Wind River and IBM; made available under the EPL v1.0 | March 10, 2008 |

Eclipse Device Debuging:
Debugger Services Framework (DSF)

Martin Oberhuber and Pawel Piech, Wind River
ECSI Workshop on System Debug, 10-Mar-2008

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.02

Eclipse Device Debugging Project
• Mission: Build enhanced debug models, API's, and views

that augment the Eclipse Debug Platform in order to address
the added complexities of device software debugging.

• Wind River (lead), Ericsson, IBM, Mentor Graphics, Nokia,
PalmSource, Symbian, TI, QNX, Freescale

• Initiatives
 Debug Views – Flexible Hierarchy
 Debugger Services Framework (DSF)
 Memory View, Multi-Context, Disassembly
 SPIRIT / IP-XACT Editor
 Target Communication Framework (TCF) – on TM Project

Pawel Piech
DD Lead

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.03

System Debug: the Big Picture

CPU

HW
IP

Standard Interface

DSP

3rd party
SW

CPU
Debugger

3rd party
SW

DSP
Debugger

SoC (Model)

Target
Description
IP-XACT,

XML

Target
Server(s)

This Slide © SPRINT and
Infineon 2008; not under EPL

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.04

History: Eclipse Platform/Debug

• ILaunchConfiguration (static)
 ILaunchConfigurationTab*
 ISourceLocator, ISourcePathComputer

• ILaunch (dynamic)
 IDebugTarget, IProcess, IThread, IStackFrame

• IBreakpoint (static+dynamic, editor integration)
 IVariable, IWatchExpression

• Synchronous operation
 Many Known implementations (JDT, CDT, PHPEclipse, PDT,

RubyDT, DLTK, IMP, … WR Workbench 2.5 and before)

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.05

History: C Debug Interface (CDI)

• CDIDebugModel (static)
 ICDIDebugger2, ICDebugConfiguration

• ICDISession (dynamic)
 ICDIEvent*, ICDISignal*, ICDIRegister

• IAddress (static+dynamic)
 ICDILocation, ICDIBreakpoint, …

• Synchronous operation
 Many Known implementations (CDT and derivatives, e.g.

Nokia Carbide, ARM, … but not WR Workbench)

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.06

Some Problems of Existing Approaches
• Fixed Hierarchy

 ILauch – IDebugTarget – IProcess – IThread – IStackFrame
 But how to map mulitple Cores on a Debug Target?

• Problematic Integration of Multiple Debug Engines
 Monolithic – Hard to do 3rd party value-add ( TCF!)
 Mixed stack view e.g. Java – JNI – Native; breakpoints
 Compare data from 2 debuggers in a variable view

• Synchronous Operation
 To evaluate a stack, variable… start a Job (which just wait on

the underlying debugger’s response most of the time)
 Scalability, Synchronization problems Jobs – Model – View

• Fixed Update Policies
 One Debug Event – All Debug Views updated: don’t scale

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.07

Wind River’s History
• Before Eclipse: Multiple Debug Technologies

 Tornado/gdb, Look!, SingleStep, VisionClick, Diab RTA
• Unified Proprietary Technology under Eclipse

 Back-End: on dfwserver (mostly based on SingleStep)
 Debug Model: Riverbed (mostly based on Diab RTA)
 Front end: Eclipse Platform/Debug

• Started Open Source Initiatives
 Device Debugging (2005) – Goal: Improve Platform/Debug

 Strong vendor participation (almost everyone including IBM)
 First Results: Debug Flexible Hierarchy, Memory Renderings
 More Initiatives: IP-XACT / SPIRIT, DSF, Disassembly

 DSF (2006) – Riverbed to Open Source
 DSF gdb/mi Reference (2007) – Ericsson and WR

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.08

Platform Flexible Debug Model (3.2+)

• First appeared as provisional API in Eclipse 3.2
 Main architect Darin Wright (IBM) based on DD discussions
 Refactored to use JFace Viewer for Eclipse 3.3
 Most APIs changed in 3.3 – will still be provisional in 3.4
 Reference: EclipseCon presentations

• Customization of standard debugger views (Debug,
Variables, Registers) look and feel

• API for populating these views with minimal
assumptions about structure and format of data

• Pluggable Update Policies

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.09

Debugger Views - Flexible Hierarchy

Adapters

A

BB

A

A

CC

B
B

C

C
C
C

Model

View

A A

B B B

C C C

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.010

Debugger Views - Flexible Hierarchy
• Adapter Types – Each adapter provides a property for elements:

 IElementContentProvider – children
 IElementLabelProvider – text, icon, font, color for each column

for an element
 IModelProxy – model event handler, translates events into view

update requests
 IColumnPresentation – list of columns
 IElementEditor – a modifier and cell editors for each column
 IElementMementoProvider – seralizable data
 IViewerInputProvider – proxy input into a viewer

• Eclipse 3.2+ comes with predefined adapters to mimic the old
Platform/Debug behavior, but uses Flexible Hierarchy internally.

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.011

Debugger Views - Flexible Hierarchy

Viewer
Model

Adapter

Request Monitor

2 update(...)

1 (create)
4 setValues(..)

3 Model specific API

5 done()

6 setData()

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.012

DSF (Debugger Services Framework)

• A Layer on top of Flexible Hierarchy to simplify its use
• API to accommodate needs of embedded debuggers:

performance, modularity, extendibility.
 DSF is based on Riverbed concepts but a Community Effort

• Part of DD project but trying to push into Platform
 DSF 0.9 with Eclipse 3.3, running for 1.0 this year
 Current WR Workbench 3.0 switched from Riverbed to DSF

• Dependencies
 Java 1.5 (for util.concurrent: Executor)
 CDT (for IAdress interface: to move into Platform)

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.013

DSF – Concurrency Model

• All public APIs accessed on a single “session” thread
 Managed by a Java 1.5 executor object
 Thread-safe: session thread as a global lock for state

accessible through public APIs of all the services
 Services are still free to create separate worker threads to

execute long-running operations
 Same model as SWT and most other window toolkits

• Leads to an asynchronous request – callback model
for most of the clients: better scalability and
performance if many threads, operations, events

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.014

DSF – Asynchronous Interfaces
Client

Service

RequestMonitor
run() {
 Client's code
}

1 (create)

2 request(RequestMonitor)

3 done()

Another Service

RequestMonitor
run() {
 Service's code
}2.2 anotherRequest(RequestMonitor)

2.1 (create)

2.3 done()

Yet Another Service

2.1.1 yetAnotherRequest(RequestMonitor)

3 done()

RequestMonitor
run() {
 Another Service's code
}

2.3 done()

...

2.1.x done()

2.1.1 (create)

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.015

DSF – Data Model
• Services' data handles implement
IDMContext interface

• Contexts are immutable, light-weight,
and must properly implement equals()
and hashCode().

• A service can build on another service's
context object to provide additional data

• Contexts are equal if all the contexts that
they build on are equal

• Services accept generic contexts as
arguments and search the context
hierarchy for the relevant handle to act
upon BContext A

Service A

BContext B

Service B BContext A

B

Service C BContext A

BContext C

Context B

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.016

GDB/MI Reference Implementation
• Create a GDB-based debugger which implements DSF model

APIs (functionally equivalent to the GDB debugger using CDI and
standard debug model)

• Tuned for gdb 6.7; to remain in DSDP-DD for Eclipse 3.4

2005 2006 2007 2008

GDB/MI Reference Implementation
(DSDP/DD/GDB)

Now

CDT to evaluate
using DSF-GDB

in Ganymede

Limited prototype
checked into CVS

along with DSF
Europa

0.9

Ganymede
(DD 1.0)Ericsson contributes

resources to project

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.017

Other DD Initiatives: Memory View
• Provide memory view support suitable for Embedded

development (pluggable Rendering Implementation)
• “Traditional Rendering” complete since Eclipse 3.3

2005 2006 2007 2008

Custom Renderings
Support
(Eclipse/Platform/Debug)

Now

Traditional Rendering
(Project/Sub-Project/Component)

Prototype checked into
HEAD branch and

presented

Ganymede
(DD 1.0)

Support for custom renderings
(Eclipse 3.1)

Bugfixes to support
Traditional Rendering
Callisto (Eclipse 3.2)

Europa
(DD 0.9)

Bug fixesConcept presented

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.018

Other DD Initiatives: Multi-Context
• To improve workflows and context switching when

debugging multiple threads, processes, targets, etc.
• “Colored Views” in WR Workbench
• Proposed patches to Platform but likely not in 3.4

20092006 2007 2008

Pin & Clone
(Eclipse/Platform/Debug)

Now

Future
(Eclipse 4.0)

Refined proposal for
managing multiple

view instances

Contribute patches to
Platform project.

Multi-Context
(Eclipse/Platform/Debug)

“Pin and Clone” for
debug views

workflow proposed

Patch contributed
to Platform, but
not used in 3.3

Original proposal for
managing multiple

view instances

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.019

Other DD Initiatives: Disassembly
• To provide a disassembly editor and replace existing CDT

disassembly view.
• In Progress at ARM but likely not complete for 3.4

2005 2006 2007 2008
Now

Disassembly Editor
(Tools/CDT/Debug)

Disassembly
requirements

gathered

Refactoring
and adopting to

an open API

Ganymede
(CDT 5.0)

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.020

References

• Eclipse Platform/Debug
 http://help.eclipse.org/help33/

• Flexible Hierarchy
 EclipseCon tutuorial presentations 2006, 2007, 2008

• DSF Architecture Docs
 http://dsdp.eclipse.org/help/latest
 EclipseCon tutorial presentation 2008

• Device Debugging Overview
 http://www.eclipse.org/dsdp/dd/

http://help.eclipse.org/help33/
http://dsdp.eclipse.org/help/latest
http://www.eclipse.org/dsdp/dd/

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind River and IBM; made available under the EPL v1.021

Questions?

