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Eclipse Device Debugging Project
• Mission:  Build enhanced debug models, API's, and views 

that augment the Eclipse Debug Platform in order to address 
the added complexities of device software debugging.

• Wind River (lead), Ericsson, IBM, Mentor Graphics, Nokia, 
PalmSource, Symbian, TI, QNX, Freescale

• Initiatives
 Debug Views – Flexible Hierarchy
 Debugger Services Framework (DSF)
 Memory View, Multi-Context, Disassembly
 SPIRIT / IP-XACT Editor
 Target Communication Framework (TCF) – on TM Project

Pawel Piech
DD Lead
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System Debug: the Big Picture
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History: Eclipse Platform/Debug

• ILaunchConfiguration (static)
 ILaunchConfigurationTab*
 ISourceLocator, ISourcePathComputer

• ILaunch (dynamic)
 IDebugTarget, IProcess, IThread, IStackFrame

• IBreakpoint (static+dynamic, editor integration)
 IVariable, IWatchExpression

• Synchronous operation
 Many Known implementations (JDT, CDT, PHPEclipse, PDT, 

RubyDT, DLTK, IMP, … WR Workbench 2.5 and before)
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History: C Debug Interface (CDI)

• CDIDebugModel (static)
 ICDIDebugger2, ICDebugConfiguration

• ICDISession (dynamic)
 ICDIEvent*, ICDISignal*, ICDIRegister

• IAddress (static+dynamic)
 ICDILocation, ICDIBreakpoint, …

• Synchronous operation
 Many Known implementations (CDT and derivatives, e.g. 

Nokia Carbide, ARM, … but not WR Workbench)
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Some Problems of Existing Approaches
• Fixed Hierarchy

 ILauch – IDebugTarget – IProcess – IThread – IStackFrame
 But how to map mulitple Cores on a Debug Target?

• Problematic Integration of Multiple Debug Engines
 Monolithic – Hard to do 3rd party value-add ( TCF!)
 Mixed stack view e.g. Java – JNI – Native; breakpoints
 Compare data from 2 debuggers in a variable view

• Synchronous Operation
 To evaluate a stack, variable… start a Job (which just wait on 

the underlying debugger’s response most of the time)
 Scalability, Synchronization problems Jobs – Model – View

• Fixed Update Policies
 One Debug Event – All Debug Views updated: don’t scale
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Wind River’s History
• Before Eclipse: Multiple Debug Technologies

 Tornado/gdb, Look!, SingleStep, VisionClick, Diab RTA
• Unified Proprietary Technology under Eclipse

 Back-End: on dfwserver (mostly based on SingleStep)
 Debug Model: Riverbed (mostly based on Diab RTA)
 Front end: Eclipse Platform/Debug

• Started Open Source Initiatives
 Device Debugging (2005) – Goal: Improve Platform/Debug

 Strong vendor participation (almost everyone including IBM)
 First Results: Debug Flexible Hierarchy, Memory Renderings
 More Initiatives: IP-XACT / SPIRIT, DSF, Disassembly

 DSF (2006) – Riverbed to Open Source
 DSF gdb/mi Reference (2007) – Ericsson and WR
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Platform Flexible Debug Model (3.2+)

• First appeared as provisional API in Eclipse 3.2
 Main architect Darin Wright (IBM) based on DD discussions
 Refactored to use JFace Viewer for Eclipse 3.3
 Most APIs changed in 3.3 – will still be provisional in 3.4
 Reference: EclipseCon presentations

• Customization of standard debugger views (Debug, 
Variables, Registers) look and feel

• API for populating these views with minimal 
assumptions about structure and format of data

• Pluggable Update Policies
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Debugger Views - Flexible Hierarchy
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Debugger Views - Flexible Hierarchy
• Adapter Types – Each adapter provides a property for elements:

 IElementContentProvider – children 
 IElementLabelProvider – text, icon, font, color for each column 

for an element
 IModelProxy – model event handler, translates events into view 

update requests
 IColumnPresentation – list of columns
 IElementEditor – a modifier and cell editors for each column
 IElementMementoProvider – seralizable data
 IViewerInputProvider – proxy input into a viewer

• Eclipse 3.2+ comes with predefined adapters to mimic the old 
Platform/Debug behavior, but uses Flexible Hierarchy internally.
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Debugger Views - Flexible Hierarchy
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DSF (Debugger Services Framework)

• A Layer on top of Flexible Hierarchy to simplify its use
• API to accommodate needs of embedded debuggers: 

performance, modularity, extendibility.
 DSF is based on Riverbed concepts but a Community Effort

• Part of DD project but trying to push into Platform
 DSF 0.9 with Eclipse 3.3, running for 1.0 this year
 Current WR Workbench 3.0 switched from Riverbed to DSF

• Dependencies
 Java 1.5 (for util.concurrent: Executor)
 CDT (for IAdress interface: to move into Platform)
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DSF – Concurrency Model

• All public APIs accessed on a single “session” thread
 Managed by a Java 1.5 executor object
 Thread-safe: session thread as a global lock for state 

accessible through public APIs of all the services
 Services are still free to create separate worker threads to 

execute long-running operations
 Same model as SWT and most other window toolkits

• Leads to an asynchronous request – callback model 
for most of the clients: better scalability and 
performance if many threads, operations, events
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DSF – Asynchronous Interfaces
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DSF – Data Model
• Services' data handles implement 
IDMContext interface

• Contexts are immutable, light-weight, 
and must properly implement equals() 
and hashCode().

• A service can build on another service's 
context object to provide additional data

• Contexts are equal if all the contexts that 
they build on are equal

• Services accept generic contexts as 
arguments and search the context 
hierarchy for the relevant handle to act 
upon BContext A
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GDB/MI Reference Implementation
• Create a GDB-based debugger which implements DSF model 

APIs (functionally equivalent to the GDB debugger using CDI and 
standard debug model)

• Tuned for gdb 6.7; to remain in DSDP-DD for Eclipse 3.4
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(DSDP/DD/GDB)
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using DSF-GDB 
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Other DD Initiatives: Memory View
• Provide memory view support suitable for Embedded 

development (pluggable Rendering Implementation)
• “Traditional Rendering” complete since Eclipse 3.3
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Other DD Initiatives: Multi-Context
• To improve workflows and context switching when 

debugging multiple threads, processes, targets, etc.
• “Colored Views” in WR Workbench
• Proposed patches to Platform but likely not in 3.4
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Other DD Initiatives: Disassembly
• To provide a disassembly editor and replace existing CDT 

disassembly view.
• In Progress at ARM but likely not complete for 3.4
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Questions?


