:@pg 5 WIND RIVER

Eclipse Device Debuging:
Debugger Services Framework (DSF)

Martin Oberhuber and Pawel Piech, Wind River
ECSI Workshop on System Debug, 10-Mar-2008

© 2006, 2008 Wind River and IBM; made available under the EPL v1.0

WIND RIVER

Eclipse Device Debugging Project

* Mission: Build enhanced debug models, API’'s, and views
that augment the Eclipse Debug Platform in order to address
the added complexities of device software debugging.

* Wind River (lead), Ericsson, IBM, Mentor Graphics, Nokia,
PalmSource, Symbian, Tl, QNX, Freescale

* Initiatives
¢ Debug Views — Flexible Hierarchy Pawel Piech
+ Debugger Services Framework (DSF) DD Lead
* Memory View, Multi-Context, Disassembly
* SPIRIT / IP-XACT Editor
¢ Target Communication Framework (TCF) — on TM Project

R B e _

:@95 5 WIND RIVER This Slide © SPRINT and
- Infineon 2008; not under EPL

System Debug: the Big Picture

I:I Standard Interface

SoC (Model)
3" party 1
I| HW
L P
] { DSP
Debugger :

R B e _

:@p% 2 WIND RIVER

History: Eclipse Platform/Debug

* |[LaunchConfiguration (static)
¢ [LaunchConfigurationTab*
¢ |Sourcelocator, ISourcePathComputer

* |Launch (dynamic)
* IDebugTarget, IProcess, IThread, IStackFrame

%% Debug 52 'Eg Hierarchy
o e 2 D

= 4 rse [Eclipse Application]
= arg.eclipse. equino:, launchel
52 Thread [main] (Running)
¥ Daemon Thread [Framey
¥ Daemon Thread [Start L
¥ Daemon Thread [org.ecl
=-# Daemon Thread [Java in

= [rdexManager Jobl

= Thread.run(l line: &1
¥ Thread [Worker-4] (Runi
5 Thread [Worker-8] (Runi
52 Thread [Worker-9] (Runi
¥ Daemon Thread [Javain

g DilappstJavaljdkl.6.0_0SiE

* IBreakpoint (static+dynamic, editor integration)

¢ |Variable, IWatchExpression

* Synchronous operation

¢+ Many Known implementations (JDT, CDT, PHPEclipse, PDT,
RubyDT, DLTK, IMP, ... WR Workbench 2.5 and before)

Marne: | Mew_confiquration

-_@pa 5 WIND RIVER

History: C Debug Interface (CDI)

¢ C D I D e b u g M Od el (Sta tIC) D:ﬂ:?:gei Shp;:ZZSLihraries
* [CDIDebugger2, ICDebugConfiguration T b
° ICDISGSS'O” (dynamIC) 0B command File: .qdbinit

Main | 69 Arguments | B8 Environment | %5
Debugger:

Stop an skartup at: | main

* ICDIEvent*, ICD|S|gnaI*, ICDIReglster "Warning: Some commands in this File may ir
] , GDE command sek: Cyignin
* |Address (static+dynamic) ool ———
* |CD|L008tI0n, ICDIBreapr|nt, "o []verbose consale mode

* Synchronous operation

* Many Known implementations (CDT and derivatives, e.g.
Nokia Carbide, ARM, ... but not WR Workbench)

R B e —

.@Q’S- WIND RIVER

Some Problems of Existing Approaches

* Fixed Hierarchy
¢ [Lauch — IDebugTarget — IProcess — IThread — IStackFrame
* But how to map mulitple Cores on a Debug Target?

* Problematic Integration of Multiple Debug Engines
* Monolithic — Hard to do 3™ party value-add (- TCF!)

* Mixed stack view e.g. Java — JNI| — Native; breakpoints
+ Compare data from 2 debuggers in a variable view

* Synchronous Operation

* To evaluate a stack, variable... start a Job (which just wait on
the underlying debugger’s response most of the time)

¢ Scalability, Synchronization problems Jobs — Model — View

* Fixed Update Policies
* One Debug Event — All Debug Views updated: don’t scale

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 ..;-.

.@[) S WIND RIVER

Wind River’'s History

* Before Eclipse: Multiple Debug Technologies
¢ Tornado/gdb, Look!, SingleStep, VisionClick, Diab RTA

* Unified Proprietary Technology under Eclipse
¢ Back-End: on dfwserver (mostly based on SingleStep)
* Debug Model: Riverbed (mostly based on Diab RTA)
* Front end: Eclipse Platform/Debug

* Started Open Source Initiatives

* Device Debugging (2005) — Goal: Improve Platform/Debug
» Strong vendor participation (almost everyone including IBM)
" First Results: Debug Flexible Hierarchy, Memory Renderings
* More Initiatives: IP-XACT / SPIRIT, DSF, Disassembly

* DSF (2006) — Riverbed to Open Source

¢ DSF gdb/mi Reference (2007) — Ericsson and WR

Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008 Wind

@p” WIND RIVER

Platform Flexible Debug Model (3.2+)

* First appeared as provisional API in Eclipse 3.2
* Main architect Darin Wright (IBM) based on DD discussions
+ Refactored to use JFace Viewer for Eclipse 3.3
* Most APIs changed in 3.3 — will still be provisional in 3.4
* Reference: EclipseCon presentations

* Customization of standard debugger views (Debug,
Variables, Registers) look and feel

* API for populating these views with minimal
assumptions about structure and format of data

* Pluggable Update Policies

Device Debugging | Debugger Services Framework (DSF) | © 2006, 200 3 W

—fafdo)52 WIND RIVER

Debugger Views - Flexible Hierarchy

Device Debugging | Debugger Services Framework (DSF) | © 2006,

:@ps 2 WIND RIVER

Debugger Views - Flexible Hierarchy

* Adapter Types — Each adapter provides a property for elements:
¢ TElementContentProvider — children

¢ TElementLabelProvider — text, icon, font, color for each column
for an element

¢ IModelProxy — model event handler, translates events into view
update requests

¢ ITColumnPresentation — list of columns

* IElementEditor —a modifier and cell editors for each column
¢ TElementMementoProvider — seralizable data

¢ IViewerInputProvider — proxy input into a viewer

* Eclipse 3.2+ comes with predefined adapters to mimic the old
Platform/Debug behavior, but uses Flexible Hierarchy internally.

11

i—@pgg WIND RIVER

Debugger Views - Flexible Hierarchy

Adapter 3 Model specific API

4 setvalues (..)

5 done ()

Request Monitor

6 setData ()

Device Debugging | Debugger Services Framework (DSF) | © 2006

.@pfp WIND RIVER

DSF (Debugger Services Framework)

* A Layer on top of Flexible Hierarchy to simplify its use

* API to accommodate needs of embedded debuggers:
performance, modularity, extendibility.
* DSF is based on Riverbed concepts but a Community Effort
* Part of DD project but trying to push into Platform
* DSF 0.9 with Eclipse 3.3, running for 1.0 this year
¢ Current WR Workbench 3.0 switched from Riverbed to DSF

* Dependencies
* Java 1.5 (for util.concurrent: Executor)
¢ CDT (for IAdress interface: to move into Platform)

12 Device Debugging | Debugger Services Framework (DSF) | © 2006, 2008

@p” WIND RIVER

DSF — Concurrency Model

* All public APls accessed on a single “session” thread
* Managed by a Java 1.5 executor object

* Thread-safe: session thread as a global lock for state
accessible through public APIs of all the services

¢ Services are still free to create separate worker threads to
execute long-running operations

¢+ Same model as SWT and most other window toolkits

* Leads to an asynchronous request — callback model
for most of the clients: better scalability and
performance if many threads, operations, events

13 Device Debugging | Debugger Services Framework (DSF) | © 2006, 200 3 W

—efle)52 WIND RIVER

DSF — Asynchronous Interfaces

1 (create)

Client

2 request (RequestMonitor)

3 done ()
Service cate

2.2 anotherRequest (RequestMonitor)

2.3. dotmxreate

Another Service

2.1.1 yetAnotherRequest (RequestMonitor)

2.1.x done ()

Yet Another Service

RequestMonitor

run() {
Client's code

‘ 3 done()

RequestMonitor

run() {

}

Service's code

}

A 2.3 done ()

RequestMonitor
run () {

Another Service's code
}

14 Device Debugging | Debugger Services Framework (DSF) | © 2006

15

DSF

\2

032 WIND RIVER

— Data Model

* Services' data handles implement Service C

IDMContext interface

* Contexts are immutable, light-weight,
and must properly implement equals ()
and hashCode ().

* A service can build on another service's
context object to provide additional data

* Contexts are equal if all the contexts that
they build on are equal

* Services accept generic contexts as
arguments and search the context
hierarchy for the relevant handle to act

upon

Service B

Service A

R B e ©20‘)_

Context A

»

Context B

ﬁ

Context C

Context A

ﬁ

Context B

Context A

. -_@ps 5 WIND RIVER

GDB/MI Reference Implementation

* Create a GDB-based debugger which implements DSF model
APIs (functionally equivalent to the GDB debugger using CDI and
standard debug model)

* Tuned for gdb 6.7; to remain in DSDP-DD for Eclipse 3.4

Limited prototype
checked into CVS
along with DSF

CDT to evaluate
using DSF-GDB
in Ganymede

GDB/MI Reference Implementation
(DSDP/DD/GDB)

Ganymede
(DD 1.0)

Ericsson contributes
resources to project

2005 2006 2007 2008

16 Device Debugging | Debugger Services Framework (DSF) | © 2006, 20

:@pg 5 WIND RIVER

Other DD Initiatives: Memory View

* Provide memory view support suitable for Embedded
development (pluggable Rendering Implementation)

* “Traditional Rendering” complete since Eclipse 3.3

Bugfixes to support
Traditional Rendering
Callisto (Eclipse 3.2)

Support for custom renderings
(Eclipse 3.1)

Custom Renderings

Support
(Eclipse/Platform/Debug)

Prototype checked into
HEAD branch and
presented

Concept presented

Ganymede
(DD 1.0)

Traditional Rendering
(Project/Sub-Project/Component)

2005 2006 2007 2008

17 Device Debugging | Debugger Services Framework (DSF) | © 2006, 20

WIND RIVER

Other DD Initiatives: Multi-Context

* To improve workflows and context switching when

debugging multiple threads, processes, targets, etc.

* “Colored Views” in WR Workbench
* Proposed patches to Platform but likely not in 3.4

Patch contributed
to Platform, but
not used in 3.3

“Pin and Clone” for
debug views
workflow proposed

Pin & Clone <4

(Eclipse/Platform/Debug)

fﬁ* Debug &2

o e ¥
. § =R
@ RISS_WindRiver _SBC7410_2F

= lﬁ‘l U1 {Syskem Mode)
= " Syskem Conkext (Stoppe
=" 0x00040400
= W WRISS WwindRiver _SBC7F410_2B
= -{p U0 (5vwstem Mode)
= System Context (Stoppe
=" BALL::Movel) - b_m:
=" main() - b_main.cpp!
=" start() - 00001008

Original proposal for
managing multiple
view instances

Refined proposal for
managing multiple
view instances

Future
(Eclipse 4.0)

Multi-Context)
(Eclipse/Platform/Debug)
Contribute patches to
Platform project.
2006 2007 2008 2009

WIND RIVER

Other DD Initiatives: Disassembly

* To provide a disassembly editor and replace existing CDT
disassembly view.

* In Progress at ARM but likely not complete for 3.4

Disassembly
requirements
gathered

Ganymede
(CDT 5.0)

Disassembly Editor ST
(Tools/CDT/Debug)

Refactoring
and adopting to
an open API

2005 2006 2007 2008

20

WIND RIVER

References

* Eclipse Platform/Debug
* http://help.eclipse.org/help33/

* Flexible Hierarchy
¢ EclipseCon tutuorial presentations 2006, 2007, 2008

* DSF Architecture Docs

* http://dsdp.eclipse.org/help/latest
* EclipseCon tutorial presentation 2008

* Device Debugging Overview
* http://www.eclipse.org/dsdp/dd/

R B e _

http://help.eclipse.org/help33/
http://dsdp.eclipse.org/help/latest
http://www.eclipse.org/dsdp/dd/

21

WIND RIVER

Questions?

R B e °_

